Domain online-ads.de kaufen?

Produkte zum Begriff Data Analytics:


  • Digital Marketing Analytics: Making Sense of Consumer Data in a Digital World
    Digital Marketing Analytics: Making Sense of Consumer Data in a Digital World

    Distill Maximum Value from Your Digital Data! Do It Now!Why hasn’t all that data delivered a whopping competitive advantage? Because you’ve barely begun to use it, that’s why! Good news: neither have your competitors. It’s hard! But digital marketing analytics is 100% doable, it offers colossal opportunities, and all of the data is accessible to you. Chuck Hemann and Ken Burbary will help you chop the problem down to size, solve every piece of the puzzle, and integrate a virtually frictionless system for moving from data to decision, action to results! Scope it out, pick your tools, learn to listen, get the metrics right, and then distill your digital data for maximum value for everything from R&D to customer service to social media marketing!Prioritize—because you can’t measure and analyze everything Use analysis to craft experiences that profoundly reflect each customer’s needs, expectations, and behaviors Measure real digital media ROI: sales, leads, and customer satisfaction Track the performance of all paid, earned, and owned digital channels Leverage digital data way beyond PR and marketing: for strategic planning, product development, and HR Start optimizing digital content in real time Implement advanced tools, processes, and algorithms for accurately measuring influence Make the most of surveys, focus groups, and offline research synergies Focus new marketing investments where they’ll deliver the most value • Identify and understand your most important audiences across the digital ecosystem“Chuck and Ken lead marketers clearly and efficiently through the minefield of digital marketing measurement. And they do so with a lightness of touch and absence of jargon so rare in this overhyped, much-misunderstood ecosystem.” —Sam Knowles, Founder & MD of Insight Agents; author of Narrative by Numbers: How to Tell Powerful & Purposeful Stories with Data

    Preis: 29.95 € | Versand*: 0 €
  • Digital Marketing Analytics: Making Sense of Consumer Data in a Digital World
    Digital Marketing Analytics: Making Sense of Consumer Data in a Digital World

    Distill Maximum Value from Your Digital Data! Do It Now!Why hasn’t all that data delivered a whopping competitive advantage? Because you’ve barely begun to use it, that’s why! Good news: neither have your competitors. It’s hard! But digital marketing analytics is 100% doable, it offers colossal opportunities, and all of the data is accessible to you. Chuck Hemann and Ken Burbary will help you chop the problem down to size, solve every piece of the puzzle, and integrate a virtually frictionless system for moving from data to decision, action to results! Scope it out, pick your tools, learn to listen, get the metrics right, and then distill your digital data for maximum value for everything from R&D to customer service to social media marketing!Prioritize—because you can’t measure and analyze everything Use analysis to craft experiences that profoundly reflect each customer’s needs, expectations, and behaviors Measure real digital media ROI: sales, leads, and customer satisfaction Track the performance of all paid, earned, and owned digital channels Leverage digital data way beyond PR and marketing: for strategic planning, product development, and HR Start optimizing digital content in real time Implement advanced tools, processes, and algorithms for accurately measuring influence Make the most of surveys, focus groups, and offline research synergies Focus new marketing investments where they’ll deliver the most value • Identify and understand your most important audiences across the digital ecosystem“Chuck and Ken lead marketers clearly and efficiently through the minefield of digital marketing measurement. And they do so with a lightness of touch and absence of jargon so rare in this overhyped, much-misunderstood ecosystem.” —Sam Knowles, Founder & MD of Insight Agents; author of Narrative by Numbers: How to Tell Powerful & Purposeful Stories with Data

    Preis: 29.95 € | Versand*: 0 €
  • Marketing Data Science: Modeling Techniques in Predictive Analytics with R and Python
    Marketing Data Science: Modeling Techniques in Predictive Analytics with R and Python

    Now, a leader of Northwestern University's prestigious analytics program presents a fully-integrated treatment of both the business and academic elements of marketing applications in predictive analytics. Writing for both managers and students, Thomas W. Miller explains essential concepts, principles, and theory in the context of real-world applications.   Building on Miller's pioneering program, Marketing Data Science thoroughly addresses segmentation, target marketing, brand and product positioning, new product development, choice modeling, recommender systems, pricing research, retail site selection, demand estimation, sales forecasting, customer retention, and lifetime value analysis.   Starting where Miller's widely-praised Modeling Techniques in Predictive Analytics left off, he integrates crucial information and insights that were previously segregated in texts on web analytics, network science, information technology, and programming. Coverage includes: The role of analytics in delivering effective messages on the web Understanding the web by understanding its hidden structures Being recognized on the web – and watching your own competitors Visualizing networks and understanding communities within them Measuring sentiment and making recommendations Leveraging key data science methods: databases/data preparation, classical/Bayesian statistics, regression/classification, machine learning, and text analytics Six complete case studies address exceptionally relevant issues such as: separating legitimate email from spam; identifying legally-relevant information for lawsuit discovery; gleaning insights from anonymous web surfing data, and more. This text's extensive set of web and network problems draw on rich public-domain data sources; many are accompanied by solutions in Python and/or R. Marketing Data Science will be an invaluable resource for all students, faculty, and professional marketers who want to use business analytics to improve marketing performance.

    Preis: 48.14 € | Versand*: 0 €
  • Marketing Data Science: Modeling Techniques in Predictive Analytics with R and Python
    Marketing Data Science: Modeling Techniques in Predictive Analytics with R and Python

    Now, a leader of Northwestern University's prestigious analytics program presents a fully-integrated treatment of both the business and academic elements of marketing applications in predictive analytics. Writing for both managers and students, Thomas W. Miller explains essential concepts, principles, and theory in the context of real-world applications.   Building on Miller's pioneering program, Marketing Data Science thoroughly addresses segmentation, target marketing, brand and product positioning, new product development, choice modeling, recommender systems, pricing research, retail site selection, demand estimation, sales forecasting, customer retention, and lifetime value analysis.   Starting where Miller's widely-praised Modeling Techniques in Predictive Analytics left off, he integrates crucial information and insights that were previously segregated in texts on web analytics, network science, information technology, and programming. Coverage includes: The role of analytics in delivering effective messages on the web Understanding the web by understanding its hidden structures Being recognized on the web – and watching your own competitors Visualizing networks and understanding communities within them Measuring sentiment and making recommendations Leveraging key data science methods: databases/data preparation, classical/Bayesian statistics, regression/classification, machine learning, and text analytics Six complete case studies address exceptionally relevant issues such as: separating legitimate email from spam; identifying legally-relevant information for lawsuit discovery; gleaning insights from anonymous web surfing data, and more. This text's extensive set of web and network problems draw on rich public-domain data sources; many are accompanied by solutions in Python and/or R. Marketing Data Science will be an invaluable resource for all students, faculty, and professional marketers who want to use business analytics to improve marketing performance.

    Preis: 36.37 € | Versand*: 0 €
  • Wie funktioniert Big Data Analytics?

    Wie funktioniert Big Data Analytics? Big Data Analytics beinhaltet die Verarbeitung und Analyse großer Mengen von Daten, um Muster, Trends und Erkenntnisse zu identifizieren. Zunächst werden die Daten gesammelt und gespeichert, dann werden sie mithilfe von speziellen Tools und Algorithmen analysiert. Durch den Einsatz von Data Mining, maschinellem Lernen und künstlicher Intelligenz können Unternehmen wertvolle Einblicke gewinnen und fundierte Entscheidungen treffen. Die Ergebnisse der Analyse können für verschiedene Anwendungen genutzt werden, wie z.B. zur Verbesserung von Produkten und Dienstleistungen, zur Optimierung von Geschäftsprozessen oder zur Vorhersage von zukünftigen Entwicklungen.

  • Wie können Big Data Analytics-Technologien im Projektmanagement eingesetzt werden?

    Big Data Analytics-Technologien können im Projektmanagement eingesetzt werden, um große Mengen an Daten aus verschiedenen Quellen zu sammeln und zu analysieren. Dies ermöglicht es Projektmanagern, Trends und Muster zu erkennen, Risiken frühzeitig zu identifizieren und fundierte Entscheidungen zu treffen. Darüber hinaus können Big Data Analytics-Technologien auch zur Vorhersage von Projektverzögerungen oder zur Optimierung von Ressourcen eingesetzt werden.

  • Was bietet bessere Chancen auf dem Arbeitsmarkt: die Entwicklung einer Data Analytics App oder Web Development?

    Es ist schwierig, eine eindeutige Antwort zu geben, da dies von verschiedenen Faktoren abhängt, wie zum Beispiel dem aktuellen Bedarf auf dem Arbeitsmarkt, den individuellen Fähigkeiten und Erfahrungen des Einzelnen sowie den spezifischen Anforderungen der jeweiligen Branche. Data Analytics ist ein wachsender Bereich, da Unternehmen verstärkt datengetriebene Entscheidungen treffen möchten. Auf der anderen Seite ist Webentwicklung nach wie vor sehr gefragt, da Unternehmen eine starke Online-Präsenz benötigen. Es kann daher sinnvoll sein, die Nachfrage in Ihrer Region und Ihre persönlichen Interessen und Fähigkeiten zu berücksichtigen, um die besten Chancen auf dem Arbeitsmarkt zu ermitteln.

  • Will Klarna online banking data?

    Klarna does not provide online banking services. It is a payment solutions provider that allows customers to make purchases online and pay later or in installments. Klarna may require certain personal and financial information to process payments, but it does not have access to or store online banking data.

Ähnliche Suchbegriffe für Data Analytics:


  • Data Analytics with Spark Using Python
    Data Analytics with Spark Using Python

    Solve Data Analytics Problems with Spark, PySpark, and Related Open Source ToolsSpark is at the heart of today’s Big Data revolution, helping data professionals supercharge efficiency and performance in a wide range of data processing and analytics tasks. In this guide, Big Data expert Jeffrey Aven covers all you need to know to leverage Spark, together with its extensions, subprojects, and wider ecosystem.Aven combines a language-agnostic introduction to foundational Spark concepts with extensive programming examples utilizing the popular and intuitive PySpark development environment. This guide’s focus on Python makes it widely accessible to large audiences of data professionals, analysts, and developers—even those with little Hadoop or Spark experience.Aven’s broad coverage ranges from basic to advanced Spark programming, and Spark SQL to machine learning. You’ll learn how to efficiently manage all forms of data with Spark: streaming, structured, semi-structured, and unstructured. Throughout, concise topic overviews quickly get you up to speed, and extensive hands-on exercises prepare you to solve real problems.Coverage includes:• Understand Spark’s evolving role in the Big Data and Hadoop ecosystems• Create Spark clusters using various deployment modes• Control and optimize the operation of Spark clusters and applications• Master Spark Core RDD API programming techniques• Extend, accelerate, and optimize Spark routines with advanced API platform constructs, including shared variables, RDD storage, and partitioning• Efficiently integrate Spark with both SQL and nonrelational data stores• Perform stream processing and messaging with Spark Streaming and Apache Kafka• Implement predictive modeling with SparkR and Spark MLlib

    Preis: 35.3 € | Versand*: 0 €
  • Data Analytics with Spark Using Python
    Data Analytics with Spark Using Python

    Solve Data Analytics Problems with Spark, PySpark, and Related Open Source ToolsSpark is at the heart of today’s Big Data revolution, helping data professionals supercharge efficiency and performance in a wide range of data processing and analytics tasks. In this guide, Big Data expert Jeffrey Aven covers all you need to know to leverage Spark, together with its extensions, subprojects, and wider ecosystem.Aven combines a language-agnostic introduction to foundational Spark concepts with extensive programming examples utilizing the popular and intuitive PySpark development environment. This guide’s focus on Python makes it widely accessible to large audiences of data professionals, analysts, and developers—even those with little Hadoop or Spark experience.Aven’s broad coverage ranges from basic to advanced Spark programming, and Spark SQL to machine learning. You’ll learn how to efficiently manage all forms of data with Spark: streaming, structured, semi-structured, and unstructured. Throughout, concise topic overviews quickly get you up to speed, and extensive hands-on exercises prepare you to solve real problems.Coverage includes:• Understand Spark’s evolving role in the Big Data and Hadoop ecosystems• Create Spark clusters using various deployment modes• Control and optimize the operation of Spark clusters and applications• Master Spark Core RDD API programming techniques• Extend, accelerate, and optimize Spark routines with advanced API platform constructs, including shared variables, RDD storage, and partitioning• Efficiently integrate Spark with both SQL and nonrelational data stores• Perform stream processing and messaging with Spark Streaming and Apache Kafka• Implement predictive modeling with SparkR and Spark MLlib

    Preis: 35.3 € | Versand*: 0 €
  • Applied Business Analytics: Integrating Business Process, Big Data, and Advanced Analytics
    Applied Business Analytics: Integrating Business Process, Big Data, and Advanced Analytics

    Bridge the gap between analytics and execution, and actually translate analytics into better business decision-making! Now that you've collected data and crunched numbers, Applied Business Analytics reveals how to fully apply the information and knowledge you've gleaned from quants and tech teams. Nathaniel Lin explains why "analytics value chains" often break due to organizational and cultural issues, and offers "in the trenches" guidance for overcoming these obstacles. You'll discover why a special breed of "analytics deciders" is indispensable for any organization that seeks to compete on analytics… how to become one of those deciders… and how to identify, foster, support, empower, and reward others to join you.   Lin draws on actual cases and examples from his own experience, augmenting them with hands-on examples and exercises to integrate analytics at all levels: from top-level business questions to low-level technical details. Along the way, you'll learn how to bring together analytics team members with widely diverse goals, knowledge, and backgrounds. Coverage includes:   How analytical and conventional decision making differ — and the challenging implications How to determine who your analytics deciders are, and ought to be Proven best practices for actually applying analytics to decision-making How to optimize your use of analytics as an analyst, manager, executive, or C-level officer Applied Business Analytics will be invaluable to wide audiences of professionals, decision-makers, and consultants involved in analytics, including Chief Analytics Officers, Chief Data Officers, Chief Scientists, Chief Marketing Officers, Chief Risk Officers, Chief Strategy Officers, VPs of Analytics and/or Big Data, data scientists, business strategists, and line of business executives. It will also be exceptionally useful to students of analytics in any graduate, undergraduate, or certificate program, including candidates for INFORMS certification.

    Preis: 39.58 € | Versand*: 0 €
  • Applied Business Analytics: Integrating Business Process, Big Data, and Advanced Analytics
    Applied Business Analytics: Integrating Business Process, Big Data, and Advanced Analytics

    Bridge the gap between analytics and execution, and actually translate analytics into better business decision-making! Now that you've collected data and crunched numbers, Applied Business Analytics reveals how to fully apply the information and knowledge you've gleaned from quants and tech teams. Nathaniel Lin explains why "analytics value chains" often break due to organizational and cultural issues, and offers "in the trenches" guidance for overcoming these obstacles. You'll discover why a special breed of "analytics deciders" is indispensable for any organization that seeks to compete on analytics… how to become one of those deciders… and how to identify, foster, support, empower, and reward others to join you.   Lin draws on actual cases and examples from his own experience, augmenting them with hands-on examples and exercises to integrate analytics at all levels: from top-level business questions to low-level technical details. Along the way, you'll learn how to bring together analytics team members with widely diverse goals, knowledge, and backgrounds. Coverage includes:   How analytical and conventional decision making differ — and the challenging implications How to determine who your analytics deciders are, and ought to be Proven best practices for actually applying analytics to decision-making How to optimize your use of analytics as an analyst, manager, executive, or C-level officer Applied Business Analytics will be invaluable to wide audiences of professionals, decision-makers, and consultants involved in analytics, including Chief Analytics Officers, Chief Data Officers, Chief Scientists, Chief Marketing Officers, Chief Risk Officers, Chief Strategy Officers, VPs of Analytics and/or Big Data, data scientists, business strategists, and line of business executives. It will also be exceptionally useful to students of analytics in any graduate, undergraduate, or certificate program, including candidates for INFORMS certification.

    Preis: 29.95 € | Versand*: 0 €
  • Was bedeuten Data Science und Data Engineering?

    Data Science bezieht sich auf die Analyse und Interpretation von Daten, um Erkenntnisse und Muster zu gewinnen, die bei der Lösung von Problemen und der Unterstützung von Entscheidungsprozessen helfen. Data Engineering hingegen bezieht sich auf die Entwicklung und Verwaltung von Dateninfrastrukturen, um sicherzustellen, dass Daten effizient erfasst, gespeichert, verarbeitet und analysiert werden können. Data Engineering legt den Fokus auf die technische Seite der Datenverarbeitung, während Data Science sich auf die Analyse und Interpretation der Daten konzentriert.

  • Warum Data Scientist?

    Warum Data Scientist? Data Scientist sind gefragt, weil sie komplexe Daten analysieren und interpretieren können, um fundierte Entscheidungen zu treffen. Sie spielen eine entscheidende Rolle bei der Optimierung von Geschäftsprozessen und der Entwicklung innovativer Produkte. Zudem bieten Data Science Karrieremöglichkeiten in verschiedenen Branchen und ermöglichen es, mit modernsten Technologien und Tools zu arbeiten. Nicht zuletzt ist Data Science ein spannendes und dynamisches Feld, das ständig neue Herausforderungen und Möglichkeiten bietet.

  • Was heißt data?

    Was heißt data? Data ist der englische Begriff für Daten, also Informationen oder Fakten, die gesammelt und analysiert werden können. Daten können in verschiedenen Formen vorliegen, wie zum Beispiel Zahlen, Texte, Bilder oder Videos. Sie sind essentiell für Entscheidungsprozesse in Unternehmen, Wissenschaft und vielen anderen Bereichen. Die Analyse von Daten ermöglicht es, Muster, Trends und Zusammenhänge zu erkennen und fundierte Schlussfolgerungen zu ziehen. In der heutigen digitalen Welt spielt die Verarbeitung und Interpretation von Daten eine immer größere Rolle.

  • Funktioniert Unlimited Data?

    Ja, Unlimited Data funktioniert, solange der Mobilfunkanbieter tatsächlich unbegrenztes Datenvolumen anbietet. Es gibt jedoch oft Einschränkungen wie eine Drosselung der Geschwindigkeit nach einer bestimmten Datenmenge oder die Priorisierung anderer Nutzer bei Netzüberlastung. Es ist wichtig, die genauen Bedingungen des Tarifs zu überprüfen, um Missverständnisse zu vermeiden.

* Alle Preise verstehen sich inklusive der gesetzlichen Mehrwertsteuer und ggf. zuzüglich Versandkosten. Die Angebotsinformationen basieren auf den Angaben des jeweiligen Shops und werden über automatisierte Prozesse aktualisiert. Eine Aktualisierung in Echtzeit findet nicht statt, so dass es im Einzelfall zu Abweichungen kommen kann.